Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
نویسندگان
چکیده
We have probed the electrostatic environment of the active site of the Tetrahymena group I ribozyme (E) using protonated 2'-aminoguanosine (), in which the 2'-OH of the guanosine nucleophile (G) is replaced by an group. At low concentrations of divalent metal ion (2 mM Mg(2+)), binds at least 200-fold stronger than G or G(NH)()2, with a dissociation constant of </=1 microM from the ribozyme. oligonucleotide substrate. complex (). This strong binding suggests that the group interacts with negatively charged phosphoryl groups within the active site. Increasing the concentration of divalent metal ion weakens the binding of to E. S more than 10(2)-fold. The Mn(2+) concentration dependence suggests that M(C), the metal ion that interacts with the 2'-moiety of G in the normal reaction, is responsible for this effect. M(C) and compete for binding to the active site; this competition could arise from electrostatic repulsion between the positively charged and M(C) and, possibly, from their competition for interaction with active site phosphoryl groups. The reactive phosphoryl group of S increases the competition between M(C) and, consistent with a network of interactions involving M(C) that help position the reactive phosphoryl group and the guanosine nucleophile with respect to one another. The chemical step with bound is at least 10(4)-fold slower than with G or G(NH)()2. These results provide additional support for an integral role of M(C) in catalysis by the Tetrahymena ribozyme, and demonstrate the utility of the moiety as an electrostatic probe within a structured RNA.
منابع مشابه
A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
Protein enzymes appear to use extensive packing and hydrogen bonding interactions to precisely position catalytic groups within active sites. Because of their inherent backbone flexibility and limited side chain repertoire, RNA enzymes face additional challenges relative to proteins in precisely positioning substrates and catalytic groups. Here, we use the group I ribozyme to probe the existenc...
متن کاملA kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very s...
متن کاملA base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
Previous work on group I introns has suggested that a central base triple might be more important for the first rather than the second step of self-splicing, leading to a model in which the base triple undergoes a conformational change during self-splicing. Here, we use the well-characterized L-21 ScaI ribozyme derived from the Tetrahymena group I intron to probe the effects of base-triple disr...
متن کاملA role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.
We have investigated the role of a single-stranded RNA junction, J1/2, that connects the substrate-containing P1 duplex to the remainder of the Tetrahymena group I ribozyme. Single-turnover kinetics, fluorescence anisotropy, and single-molecule fluorescence resonance energy transfer studies of a series of J1/2 mutants were used to probe the sequence dependence of the catalytic activity, the P...
متن کاملAn active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions.
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 34 شماره
صفحات -
تاریخ انتشار 1999